a2 United States Patent
Gopal et al.

US009461816B2

US 9,461,816 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHODS, SYSTEMS AND APPARATUS TO
REDUCE PROCESSOR DEMANDS DURING
ENCRYPTION
(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Vinodh Gopal, Westborough, MA (US);
Erdinc Ozturk, Marlborough, MA
(US); James D. Guilford,
Northborough, MA (US)

(73)

Assignee: Intel Corporation, Santa Clara, CA

(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 627 days.

@
(22)

Appl. No.: 13/727,141

Filed: Dec. 26, 2012

(65) Prior Publication Data

US 2014/0177823 Al Jun. 26, 2014

Int. CI.
HO4L 29/00
HO4L 9/06
GOGF 9/00
GOGF 21/00
U.S. CL
CPC oo HO4L 9/0637 (2013.01); GOGF 9/00
(2013.01); GOG6F 21/00 (2013.01); HO4L
2209/12 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)
(2013.01)

(52)

(58) Field of Classification Search
CPC ittt HO04L 9/0637

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

2008/0240421 Al 10/2008 Gopal et al.

OTHER PUBLICATIONS

Shay Gueron and Michael Kounavis, “Intel® Carry-Less Multipli-
cation Instruction and its Usage for Computing the GCM Mode”,
White Paper, May 2010 found in URL “http://cqcontent.intel.com/
content/dam/www/public/us/en/documents/white-papers/carry-
less-multiplication-instruction-in-gem-mode-paper.pdf”.*
Erdinc Ozturk and Vinodh Gopal, “Enabling High-Performance
Galois-Counter-Mode on Intel® Architecture Processors”, White
Paper, Oct. 2012 found in URL “http://www.intel.com/content/dam/
www/public/us/en/documents/software-support/enabling-high-per-
formance-gem.pdf”.*
“PSHUFB—Packed Shuffle Bytes,” http://www.felixcloutier.com/
x86/PSHUFB.html, retrieved from the internet on May 20, 2015, 3
pages.
Wikipedia, “Advanced Encryption Standard,” retrieved from
Wikipedia on Nov. 1, 2012, 10 pages.
Rott, Jeffrey, Intel® Advanced Encryption Standard Instructions
(AES-NI), Feb. 2, 2012, 5 pages.
Intel, “Download the Intel AESNI Sample Library,” retrieved from
http://software.intel.com/en-us/articled/download-the-intel -aesni-
sample-library on Jul. 12, 2012, 1 page.
Wikipedia, “Block Size (cryptography),” retrieved from Wikipedia
on Nov. 1, 2012, 1 page.
Davies, Joe, “Chapter 13—Internet Protocol Security and Packet
Filtering,” published Dec. 27, 2005, updated Apr. 19, 2006, 20
pages.

(Continued)

Primary Examiner — Saleh Najjar

Assistant Examiner — Simon Kanaan

(74) Attorney, Agent, or Firm — Hanley, Flight &
Zimmerman, LLC

(57) ABSTRACT

Methods and apparatus are disclosed to reduce processor
demands during encryption. A disclosed example method
includes detecting a request for the processor to execute an
encryption cipher determining whether the encryption
cipher is associated with a byte reflection operation, pre-
venting the byte reflection operation when a buffer associ-
ated with the encryption cipher will not cause a carryover
condition, and incrementing the buffer via a shift operation
before executing the encryption cipher.

25 Claims, 7 Drawing Sheets

7
PROCESSOR,
2z,

i
MEMORY ,/,

2
Pk
- 206
/
/
/
GCM ENGINE
| 206
A
‘ 220
- 208
____________ 25
|
NW GRAPHICS | !
INTERFACE !
214 210 '
|

STORAGE
218

US 9,461,816 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Wikipedia, “Cipher,” retrieved from Wikipedia on Dec. 2, 2012, §
pages.

Saarinen, Markku-Juhani O., “Cycling Attacks on GCM, GNASH
and Other Polynomial MACs and Hashes,” © 2012, 9 pages.
Intel, “Fast Cryptographic Computation on Intel® Architecture
Processors Via Function Stitching,” Apr. 2010, 19 pages.
Wikipedia, “Galois/Counter Mode,” retrieved from Wikipedia on
Nov. 5, 2012, 5 pages.

Stephenson, Brad, “IPsec: Security Across the Protocol Stack,”
CSCI NetProg, 27 pages.

Wikipedia, “IPsec,” retrieved from Wikipedia on Nov. 5, 2012, 7
pages.

Intel, “Optimized Galois-Counter-Mode Implementation on Intel®
Architecture Processors,” Aug. 2010, 23 pages.

Dworkin, Morris, Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, NIST, Nov.
2007, 39 pages.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 7 US 9,461,816 B2

/ 100

106
102

CTR = byte reflect(CTR) 08

xmm0=CTR+1 _—" »110
104 . Xmm1 = byte_reflect(xmmo0)
A = _
xmm1 = AES(xmm1,Key)

xmm1 = xmm1 XOR plaintext

)

FIG. 1

U.S. Patent Oct. 4, 2016 Sheet 2 of 7 US 9,461,816 B2

,— 206 ,— 206
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
I 4
// /I
PROCESSOR / MEMORY / GCM ENGINE
202 - £ - 24—+ — 206
| _ _ | _ _
220
- 208

————————————————————————————— I
| [
[NW GRAPHICS | !
| | DISK CO,;EROLLER Pc2)|1r<2T S INTERFACE CONTROLLER | !
: 216 el 214 210 :
| [

— e — e e - e — e —)

|

STORAGE
218

FIG. 2

U.S. Patent Oct. 4, 2016 Sheet 3 of 7 US 9,461,816 B2

2
/~ 06
CIPHER MODULE AUTHENTICATION
INTERFACE MODULE INTERFACE
302 304
BYTE ORDER BYTE REFLECTION
MANAGER ENGINE
306 308
CARRYOVER GCM COUNTER
DETECTOR MANAGER
310 312

FIG. 3

U.S. Patent Oct. 4, 2016 Sheet 4 of 7 US 9,461,816 B2

UINT8 index = msb (CTR) 7
for (i = 0; i < buffer_size < i++)/_404
{ 406

if (index == OxFF)”

CTR = byte reflect(CTR)

418 < CTR=CTR+1
CTR = byte reflect(CTR)
xmm1 = AES (CTR, Key)

xmm1 = xmm1 XOR plaintext
index =0

else 410
— CTR=CTR + 1 (1<<(128-8))”

xmm1 = AES(CTR Key) /2
xmm1 = xmm1 XOR plalntext/_
| index = (index + 1) mod 0x1007

414

408 <

FIG. 4

U.S. Patent Oct. 4, 2016 Sheet 5 of 7 US 9,461,816 B2

500
C sART) ¥
Y
502 NO
IPSec APPLICATION?
YES v /%
INVOKE DEFAULT DATA
SECURITY AND/OR
AUTHENTICATION
v |

506 N INVOKE AUTHENTICATION MODULE AND
CIPHER MODULE

A 4

508 \| IDENTIFY MSB OF GCM COUNTER. SET INPUT
BUFFER INDEX TO MSB.

2l
Lt)

A 4

510 \< INPUT BUFFER INDEX HAVE \YES

CARRY AT NEXT ITERATION? /

NO
520
512 ~\ ’ \ \ 4
ADD 1 TO MSB OF GCM COUNTER BYTE REFLECTION
L
514 N\ i
APPLY CIPHER TO SHIFTED GCM COUNTER TO
DETERMINE CIPHER OUTPUT STRING

516 N v
XOR CIPHER STRING WITH PLAINTEXT

518 N v
INCREMENT INPUT BUFFER INDEX VALUE

FIG. 5

U.S. Patent Oct. 4, 2016

Sheet 6 of 7

US 9,461,816 B2

/‘ 520
(BYTE REFLECTION)
\ 4
INVOKE BYTE REFLECTION ON CURRENT |/~ 602
VALUE OF GCM COUNTER
\ 4
604
INCREMENT GCM COUNTER
\ 4
INVOKE ANOTHER BYTE REFLECTION ON GCM |/~ 606
COUNTER
\ 4
APPLY CIPHER TO REFLECTED GCM COUNTER |/~ 608
TO DERIVE CIPHER OUTPUT STRING
\ 4
~ 610
XOR CIPHER STRING WITH PLAINTEXT
Y 612
SET INPUT BUFFER = 0 a
\ 4
C RETURN)

FIG. 6

U.S. Patent Oct. 4, 2016 Sheet 7 of 7
728
| 714 v
MASS
| RANDOM > STORAGE
ACCESS <>
| MEMORY
HN 722
-y L
INPUT
| DEVICE(S)
| 716
READ ONLY l 720
| MEMORY [
-~
| 732 718
| 712 ¢ 724
OUTPUT
|| PROCESSOR DRVICES)
| LOCAL <
| MEMORY
| ul 713
N— 732
- _ _ _ _ _ _

US 9,461,816 B2

.
\JNSTRUCTIONS

INTERFACE <—|—>

US 9,461,816 B2

1

METHODS, SYSTEMS AND APPARATUS TO
REDUCE PROCESSOR DEMANDS DURING
ENCRYPTION

FIELD OF THE DISCLOSURE

This disclosure relates generally to encryption, and, more
particularly, to methods, systems and apparatus to reduce
processor demands during encryption.

BACKGROUND

Computing systems are faced with obligations to provide
data security services, such as one or more encryption
services and/or authentication services. Encryption services
are typically performed by one or more algorithm ciphers,
which may employ one or more keys to convert information
from plain text into ciphertext. A trusted and widely adopted
block-type symmetric-key cipher is the Advanced Encryp-
tion Standard (AES) cipher that was adopted by the U.S.
Government. The AES cipher may introduce a significant
amount of computing system burden when performing its
iterative cycles of ciphertext generation. Such computing
system burdens may be further exacerbated based on a size
of the key.

Computing systems may also employ authentication ser-
vices together with the encryption and/or decryption ser-
vices. The Galois Counter Mode (GCM) combines encryp-
tion with authentication in a manner that takes advantage of
parallel operation(s) of the computing system on which it
operates.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is example pseudo code implementing an example
cipher algorithm to facilitate byte reflection with an encryp-
tion cipher.

FIG. 2 is a schematic illustration of a portion of an
example processor platform to reduce processor demands
during encryption consistent with the teachings of this
disclosure.

FIG. 3 is a schematic illustration of an example GCM
engine of FIG. 2.

FIG. 4 is example pseudo code implementing an example
cipher algorithm to reduce processor demands during
encryption consistent with the teachings of this disclosure.

FIGS. 5 and 6 are flowcharts representative of example
machine readable instructions which may be executed to
reduce processor demands during encryption.

FIG. 7 is a schematic illustration of an example processor
platform that may execute the instructions of FIGS. 5 and 6
to implement the example systems and apparatus of FIGS.
1-4.

DETAILED DESCRIPTION

The combination of data security and authentication may
be realized on a computing system by way of the Galois
Counter Mode (GCM) block cipher mode. Such combina-
tions are particularly important to one or more services used
by the computing system, such as Internet Protocol (IP)
security applications (IPSec) and applications for secure
virtual private network (VPN) connectivity. IPSec secures
IP communication by, in part, authenticating and encrypting
each IP packet of a communication session.

When performing both cipher operations for data security
and authentication operations, the architectural resources of

10

20

25

40

45

50

55

65

2

the computing system become burdened when working on
blocks of input data. Because the GCM operation causes a
relatively high operations-per-cycle retirement rate, and uses
most or all available processor registers, parallelized opti-
mizations are pushed to a finite level of availability. In other
words, further parallelization may not be possible and/or
yield anything other than negligible boosts in GCM perfor-
mance.

Some services and/or operations performed by the com-
puting system operate with registers weighted in a manner
inconsistent with GCM. For example, an example service
invoked to be executed by the computing system may
establish a most significant bit (MSB) and a least significant
bit (LSB) in a manner opposite to that employed by GCM.
In such circumstances, byte reflection is performed to switch
register weights in a manner that facilitates consistent opera-
tion. When applying GCM to applications that require byte
reflection, such as IPSec, the data security (cipher) services
must also be tailored to work with the byte reflected appli-
cations. In other words, the manner in which data is stored
in the processor architecture and the manner in which data
is stored in the memory does not match in view of MSB and
LSB orientation. To bring the orientation in alignment for
data security operation(s), such as application of Advanced
Encryption Standard (AES) operations, inputs to the algo-
rithm must be byte-reflected. The AES was published by the
National Institute of Standards and Technology (NIST) as a
standard that employs a secret key system via symmetric
block ciphers for encryption and/or decryption operations.
Encryption operations (e.g., cipher operations) perform a
series of transformations using the secret key (e.g., cipher
key) to transform intelligible data (plaintext) into an unin-
telligible form (e.g., ciphertext). For cipher applications
requiring byte reflection, if input bytes were ordered from 15
to 0, then byte reflection re-orients the bytes from 0 to 15.

In the illustrated example of FIG. 1, pseudo code 100
implementing an AES algorithm is shown for an application
associated with IPSec. The example AES algorithm includes
a counter “CTR” for its operation, in which the input “CTR”
102 must be byte reflected. AES in GCM works on byte-
reflected values, but the counter mode aspect of GCM
operates in normal form (e.g., a byte orientation opposite to
that employed by AES). As such, the input counter 102 is
converted into a normal byte order, incremented, and then
byte-reflected back for AES encryption. In other words,
prior to using the byte reflected data with a call to the AES
cipher 104, two byte reflection operations occur 106, 108.
Additional IPSec requirements include a need to add one to
the MSB of the initial counter input.

Byte reflection may be accomplished via a “pshufb”
instruction, which rearranges bytes. While byte reflection
operation efficiency may be improved via a “pshufb”
instruction, which can operate using one clock cycle, such
“pshufb” instructions are resource intensive and employed
during every block iteration of an input buffer. Three sepa-
rate instructions occur 110 before each call to the AES cipher
104, and such calls occur within a critical path of processor
operation.

FIG. 2 illustrates a portion of an example processor
platform 200 that includes processor(s) 202, memory 204, a
GCM engine 206, and other hardware 208, such as a
graphics controller 210, ports 212, a network interface 214,
and a disk controller 216, which may be connected to one or
more storage devices 218. The example network interface
214 of FIG. 2 may employ and/or otherwise require IPSec
services when establishing VPN connections. While the
example GCM engine 206 is illustrated in FIG. 2 as com-

US 9,461,816 B2

3

municatively connected to a bus 220, the example GCM
engine 206 may be, instead, integrated within the processor
202 and/or the memory 204.

In operation, the example GCM engine 206 monitors the
platform 200 for an instance of security services in which
one or more byte reflect operations may be needed. In some
examples, the network interface 214 invokes a request to the
processors 202 for security services. Such a request may
include one or more IPSec requests. As described in further
detail below, the example GCM engine 206 of FIG. 2
responds to the one or more byte reflect operations in a
manner that reduces processing demands on the example
processors 202 during security services, such as encryption.

FIG. 3 is a schematic illustration of an example imple-
mentation of the example GCM engine 206 of FIG. 2. In the
illustrated example of FIG. 3, the GCM engine 206 includes
a cipher module interface 302, an authentication module
interface 304, a byte order manager 306, a byte reflection
engine 308, a carryover detector 310, and a GCM counter
manager 312. In operation, the example byte order manager
306 monitors the processors 202 for one or more service
requests related to an operation that requires byte reflection.
In the event one or more security services do not require byte
reflection, then the example byte order manager invokes
default data security and/or authentication services from one
or more ciphers and/or authentication modules. On the other
hand, in the event the example byte order manager 306
identifies that one or more security services require byte
reflection, then the example cipher module interface 302
and/or the example authentication module interface 304
invoke corresponding ciphers and/or authentication algo-
rithms, respectively. For example, GCM services parallelize
AES encryption with the GHASH hash-based authentication
component.

FIG. 4 illustrates pseudo code implementing an example
AES algorithm 400 to reduce processor demands during
encryption. In the illustrated example of FIG. 4, the byte
order manager 306 identifies the MSB of a counter of the
GCM (402), and sets an input buffer index value “index” to
the MSB position (404). The example carryover detector
310 determines whether the buffer index will have a carry at
its next iteration of the counter block input (406). In some
examples, the carryover condition is identified by comparing
the MSB of the buffer with a maximum block size of the
counter. If a carryover will not occur, then the example
methods, systems and apparatus disclosed herein to reduce
processor demands during encryption allow the AES cipher
to operate without employing pshufb instructions (408),
thereby reducing a corresponding processor 202 load. In
some examples, reducing the processor load includes replac-
ing the pshufb instructions with one or more logical shift
operations (e.g., left-shift operator(s) “<<”, right-shift
operator(s) “>>", bitwise operator(s), arithmetic shift(s),
logical shift(s), etc.), which requires substantially fewer
computational demands of the processor 202.

If the example carryover detector 310 determines that the
GCM input buffer will not invoke a carryover at a next
iteration of the counter block input (406), then the example
GCM counter manager 312 adds a value of 1 to the MSB of
the GCM counter “CTR” (410). The shifted counter value is
applied to the cipher (e.g., AES) by the example cipher
module interface 302. The example cipher module interface
302 uses a key to calculate a cipher output string (412). The
cipher output string is XORed with plaintext to generate
ciphertext (414). The example byte order manager 306

10

15

20

25

30

35

40

45

50

55

60

65

4

increments the input buffer index value (416) so that the next
block iteration may be tested for the possibility of a carry
overflow (406).

In the event of a carry overflow (406), the example byte
order manager 306 invokes traditional techniques to apply
the cipher (e.g., AES) for data security (418). In particular,
byte reflection operations require at least two pshufb opera-
tions, as described above in connection with FIG. 1. At least
one benefit of the AES algorithm 400 of FIG. 4 is that the
relatively processor intensive pshutb operations only occur
one time per block for a given block size. For example, a
block size of 256 may employ the AES cipher without
pshutb operations for 255 iterations of the block, thereby
relieving the example processor platform 200 of a substan-
tial computational burden (e.g., reducing the load from 256
pshib operations to one).

While an example manner of implementing the example
platform 200 and/or the example GCM engine 206 to reduce
processor demands during encryption has been illustrated in
FIGS. 2-4, one or more of the elements, processes and/or
devices illustrated in FIGS. 2-4 may be combined, divided,
re-arranged, omitted, eliminated and/or implemented in any
other way. Further, any or all of the example GCM engine
206, the example cipher module interface 302, the example
authentication module interface 304, the example byte order
manager 306, the example byte reflection engine 308, the
example carryover detector 310 and/or the example GCM
counter manager 312 of FIGS. 2 and 3 may be implemented
by hardware, software, firmware and/or any combination of
hardware, software and/or firmware. Thus, for example, any
of the example GCM engine 206, the example cipher
module interface 302, the example authentication module
interface 304, the example byte order manager 306, the
example byte reflection engine 308, the example carryover
detector 310 and/or the example GCM counter manager 312
of FIGS. 2 and 3 could be implemented by one or more
circuit(s), programmable processor(s), application specific
integrated circuit(s) (ASIC(s)), programmable logic
device(s) (PLD(s)) and/or field programmable logic
device(s) (FPLD(s)), etc. When any of the apparatus or
system claims of this patent are read to cover a purely
software and/or firmware implementation, at least one of the
example GCM engine 206, the example cipher module
interface 302, the example authentication module interface
304, the example byte order manager 306, the example byte
reflection engine 308, the example carryover detector 310
and/or the example GCM counter manager 312 of FIGS. 2
and 3 are hereby expressly defined to include a tangible
computer readable storage medium such as a memory, DVD,
CD, Blu-ray, etc. storing the software and/or firmware.
Further still, the example platform 200 of FIG. 2 and the
example GCM engine 206 of FIGS. 2 and 3 may include one
or more elements, processes and/or devices in addition to, or
instead of, those illustrated in FIGS. 2-4, and/or may include
more than one of any or all of the illustrated elements,
processes and devices.

Flowcharts representative of example machine readable
instructions for implementing the platform 200 of FIG. 2,
the example GCM engine 206 of FIGS. 2 and 3 and/or the
example AES algorithm 400 of FIG. 4 are shown in FIGS.
5 and 6. In this example, the machine readable instructions
comprise a program for execution by a processor such as the
processor 712 shown in the example computer 700 dis-
cussed below in connection with FIG. 7. The program may
be embodied in software stored on a tangible computer
readable storage medium such as a CD-ROM, a floppy disk,
a hard drive, a digital versatile disk (DVD), a Blu-ray disk,

US 9,461,816 B2

5

or a memory associated with the processor 712, but the
entire program and/or parts thereof could alternatively be
executed by a device other than the processor 712 and/or
embodied in firmware or dedicated hardware. Further,
although the example program is described with reference to
the flowcharts illustrated in FIGS. 5 and 6, many other
methods of implementing the example platform 200, the
example GCM engine 206 and the example AES algorithm
to reduce processor demands during encryption may alter-
natively be used. For example, the order of execution of the
blocks may be changed, and/or some of the blocks described
may be changed, eliminated, or combined.

As mentioned above, the example processes of FIGS. 5
and 6 may be implemented using coded instructions (e.g.,
computer readable instructions) stored on a tangible com-
puter readable storage medium such as a hard disk drive, a
flash memory, a read-only memory (ROM), a compact disk
(CD), a digital versatile disk (DVD), a cache, a random-
access memory (RAM) and/or any other storage device
and/or storage disc in which information is stored for any
duration (e.g., for extended time periods, permanently, brief
instances, for temporarily buffering, and/or for caching of
the information). As used herein, the term tangible computer
readable storage medium is expressly defined to include any
type of computer readable storage device and/or storage disc
and to exclude propagating signals. Additionally or alterna-
tively, the example processes of FIGS. 5 and 6 may be
implemented using coded instructions (e.g., computer read-
able instructions) stored on a non-transitory computer read-
able storage medium such as a hard disk drive, a flash
memory, a read-only memory, a compact disk, a digital
versatile disk, a cache, a random-access memory and/or any
other storage media in which information is stored for any
duration (e.g., for extended time periods, permanently, brief
instances, for temporarily buffering, and/or for caching of
the information). As used herein, the term non-transitory
computer readable medium is expressly defined to include
any type of computer readable storage device and/or storage
disc and to exclude propagating signals. As used herein,
when the phrase “at least” is used as the transition term in
a preamble of a claim, it is open-ended in the same manner
as the term “comprising” is open ended. Thus, a claim using
“at least” as the transition term in its preamble may include
elements in addition to those expressly recited in the claim.

The program 500 of FIG. 5 begins at block 502 where the
example byte order manager 306 determines whether one or
more security operations associated with byte reflection are
to be processed by the example processor 202. If not, then
the example byte order manager 306 invokes default data
security and/or authentication services (block 504). How-
ever, in the event that the byte order manager 306 determines
that operations requiring byte reflection have been invoked
and/or are otherwise to be executed by the processor 202
(block 502), then the example cipher module interface 302
and the example authentication module interface 304 are
invoked to begin GCM operations (block 506).

The example byte order manager 306 identifies the MSB
of'a counter of the GCM engine 206 and sets a buffer index
value to the MSB position (block 508). If the example
carryover detector 310 determines that the buffer index
value will not experience a carry at its next iteration (block
510), then the example GCM counter manager 312 adds 1 to
the MSB of the GCM counter (block 512). The example
cipher module interface 302 applies the cipher to the incre-
mented (e.g., incremented by a byte shift operation) GCM
counter to determine an output string (block 514), and XORs
the cipher string with plain text to generate ciphertext (block

10

15

20

25

30

35

40

45

50

55

60

65

6

516). The example byte order manager 306 increments the
buffer index value by 1 (block 518) and control returns to
block 510 to determine whether a carryover will occur.

In the event a carryover will occur at the next iteration
(block 510), the example byte reflection engine initializes
byte reflection operations (block 520). Example byte reflec-
tion operations are illustrated in FIG. 6. In the illustrated
example of FIG. 6, the byte reflection engine 308 invokes a
byte reflection operation by way of a pshufb operation on the
current value of the GCM counter (block 602). The example
GCM counter manager 312 increments the GCM counter
(block 604) and the example byte reflection engine 308
invokes another pshufb operation to byte reflect the GCM
counter (block 606). The cipher (e.g., AES) is applied to the
reflected GCM counter by the example cipher module
interface 302 to derive a cipher output string (block 608),
and the cipher string is XORed with plaintext (block 610).
Because byte reflection via pshufb operations/instructions
only occurs during instances of block carryover, the example
byte order manager 306 resets the input buffer value to zero
(block 612), and control returns to block 510 of FIG. 5 to
determine whether the next iteration of another input buffer
value (e.g., from a requesting [Psec operation) will cause a
carry.

FIG. 7 is a block diagram of an example processor
platform 700 capable of executing the instructions of FIGS.
5 and 6 to implement the platform 200 of FIG. 2, the GCM
engine 206 of FIGS. 2 and 3, and/or the program 400 of FIG.
4. The processor platform 700 can be, for example, a server,
a personal computer, an Internet appliance, a mobile device,
or any other type of computing device.

The system 700 of the instant example includes a pro-
cessor 712. For example, the processor 712 can be imple-
mented by one or more microprocessors or controllers from
any desired family or manufacturer.

The processor 712 includes a local memory 713 and is in
communication with a main memory including a volatile
memory 714 and a non-volatile memory 716 via a bus 718.
The volatile memory 714 may be implemented by Synchro-
nous Dynamic Random Access Memory (SDRAM),
Dynamic Random Access Memory (DRAM), RAMBUS
Dynamic Random Access Memory (RDRAM) and/or any
other type of random access memory device. The non-
volatile memory 716 may be implemented by flash memory
and/or any other desired type of memory device. Access to
the main memory 714, 716 is controlled by a memory
controller.

The processor platform 700 also includes an interface
circuit 720. The interface circuit 720 may be implemented
by any type of interface standard, such as an FEthernet
interface, a universal serial bus (USB), and/or a PCI express
interface.

One or more input devices 722 are connected to the
interface circuit 720. The input device(s) 722 permit a user
to enter data and commands into the processor 712. The
input device(s) can be implemented by, for example, a
keyboard, a mouse, a touchscreen, a track-pad, a trackball,
isopoint and/or a voice recognition system.

One or more output devices 724 are also connected to the
interface circuit 720. The output devices 724 can be imple-
mented, for example, by display devices (e.g., a liquid
crystal display, a cathode ray tube display (CRT), a printer
and/or speakers). The interface circuit 720, thus, typically
includes a graphics driver card.

The interface circuit 720 also includes a communication
device such as a modem or network interface card to
facilitate exchange of data with external computers via a

US 9,461,816 B2

7

network 726 (e.g., an Ethernet connection, a digital sub-
scriber line (DSL), a telephone line, coaxial cable, a cellular
telephone system, etc.).

The processor platform 700 also includes one or more
mass storage devices 728 for storing software and data.
Examples of such mass storage devices 728 include floppy
disk drives, hard drive disks, compact disk drives and digital
versatile disk (DVD) drives.

The coded instructions 732 of FIGS. 5 and 6 may be
stored in the mass storage device 728, in the volatile
memory 714, in the non-volatile memory 716, and/or on a
removable storage medium such as a CD or DVD. Methods,
apparatus, systems and articles of manufacture are disclosed
to reduce processor demands during encryption. Some dis-
closed example methods include detecting a request for the
processor to execute an encryption cipher, determining
whether the encryption cipher is associated with a byte
reflection operation, preventing the byte reflection operation
when a buffer associated with the encryption cipher will not
cause a carryover condition, and incrementing the buffer via
a shift operation before executing the encryption cipher.
Other disclosed example methods include employing an
Advanced Encryption Standard (AES) cipher as the encryp-
tion cipher. Still other disclosed example methods include
byte reflection operations based on a request for Internet
Protocol Security (IPSec) communication. Some disclosed
example methods include associating the buffer with a
Galois Counter Mode (GCM) block cipher mode, determin-
ing a most significant bit associated with the buffer, and
identifying the carryover condition by comparing the most
significant bit of the buffer with a maximum block size.
Other disclosed example methods include replacing a pshufb
operation with a logical shift operation, and applying a
pshutb operation to byte reflect the buffer when the carry-
over condition is true.

Example apparatus to reduce processor demands during
encryption include a cipher module interface to detect a
request for the processor to execute an encryption cipher, a
byte order manager to determine whether the encryption
cipher is associated with a byte reflection operation, a
carryover detector to prevent the byte reflection operation
when a buffer associated with the encryption cipher will not
cause a carryover condition, and a counter manager to
increment the buffer via a shift operation before executing
the encryption cipher. Other example disclosed apparatus
include the cipher module interface to employ an Advanced
Encryption Standard (AES) cipher, and the cipher module
interface to identify a request for Internet Protocol Security
(IPSec) communication. Some example disclosed apparatus
associate the buffer with a Galois Counter Mode (GCM)
block cipher mode, in which the byte order manager is to
determine a most significant bit associated with the buffer.
Still other example disclosed apparatus include the carry-
over detector to identify the carryover condition by com-
paring the most significant bit of the buffer with a maximum
block size. Other example disclosed apparatus include the
counter manager to replace a pshufb operation with a logical
shift operation in response to preventing the byte reflection
operation and/or the counter manager is to invoke a pshufb
operation to byte reflect the buffer when the carryover
condition is true.

Some disclosed example machine readable storage medi-
ums comprising instructions that, when executed, cause a
machine to detect a request for the processor to execute an
encryption cipher, determine whether the encryption cipher
is associated with a byte reflection operation, prevent the
byte reflection operation when a buffer associated with the

10

15

20

25

30

35

40

45

50

55

60

8

encryption cipher will not cause a carryover condition, and
increment the buffer via a shift operation before executing
the encryption cipher. Some example machine readable
storage mediums include initiating an Advanced Encryption
Standard (AES) cipher. Other example machine readable
storage mediums include initiating a Galois Counter Mode
(GCM) block cipher mode, and determining a most signifi-
cant bit associated with the buffer associated with the GCM
block cipher mode, and/or identifying the carryover condi-
tion by comparing the most significant bit of the buffer with
a maximum block size. Some example machine readable
storage mediums include replacing a pshufb operation with
a logical shift operation, or applying a pshufb operation to
byte reflect the buffer when the carryover condition is true.

Although certain example methods, apparatus and articles
of manufacture have been described herein, the scope of
coverage of this patent is not limited thereto. On the con-
trary, this patent covers all methods, apparatus and articles
of manufacture fairly falling within the scope of the claims
of this patent.

What is claimed is:

1. A method to reduce a load on a processor, comprising:

detecting a request for the processor to execute an encryp-
tion cipher;

determining whether the encryption cipher is associated
with a byte reflection operation;

preventing the byte reflection operation when a buffer
associated with the encryption cipher will not cause a
carryover condition; and

incrementing the buffer via a shift operation before
executing the encryption cipher.

2. A method as defined in claim 1, wherein the encryption
cipher includes an Advanced Encryption Standard (AES)
cipher.

3. A method as defined in claim 1, wherein the byte
reflection operation is based on a request for Internet Pro-
tocol Security (IPSec) communication.

4. A method as defined in claim 1, wherein the buffer is
associated with a Galois Counter Mode (GCM) block cipher
mode.

5. A method as defined in claim 4, further including
determining a most significant bit associated with the buffer.

6. A method as defined in claim 5, wherein the carryover
condition is identified by comparing the most significant bit
of the buffer with a maximum block size.

7. A method as defined in claim 1, wherein preventing the
byte reflection operation includes replacing a pshufb opera-
tion with a logical shift operation.

8. A method as defined in claim 1, wherein the byte
reflection operation includes a pshufb operation.

9. A method as defined in claim 1, further including
applying a pshufb operation to byte reflect the buffer when
the carryover condition occurs.

10. A processor, comprising:

a cipher module interface to detect a request for the

processor to execute an encryption cipher;

a byte order manager to determine whether the encryption
cipher is associated with a byte reflection operation;

a buffer associated with the encryption cipher;

a carryover detector to prevent the byte reflection opera-
tion when the buffer will not exhibit a carryover con-
dition; and

a counter manager to increment the buffer via a shift
operation before the encryption cipher is executed.

11. A processor as defined in claim 10, wherein the cipher
module interface is to employ an Advanced Encryption
Standard (AES) cipher.

US 9,461,816 B2

9

12. A processor as defined in claim 10, wherein the cipher
module interface is to identify a request for Internet Protocol
Security (IPSec) communication.
13. A processor as defined in claim 10, wherein the buffer
is associated with a Galois Counter Mode (GCM) block
cipher mode.
14. A processor as defined in claim 13, wherein the byte
order manager is to determine a most significant bit asso-
ciated with the buffer.
15. A processor as defined in claim 14, wherein the
carryover detector is to identify the carryover condition by
comparing the most significant bit of the buffer with a
maximum block size.
16. A processor as defined in claim 10, wherein the
counter manager is to replace a pshufb operation with a
logical shift operation in response to preventing the byte
reflection operation.
17. A processor as defined in claim 10, wherein the byte
reflection operation includes a pshufb operation.
18. A processor as defined in claim 10, wherein the
counter manager is to invoke a pshufb operation to byte
reflect the buffer when the carryover condition occurs.
19. A tangible computer readable storage medium com-
prising instructions that, when executed, cause a processor
to, at least:
in response to a request for the processor to execute an
encryption cipher, determine whether the encryption
cipher is associated with a byte reflection operation;

prevent the byte reflection operation when a buffer asso-
ciated with the encryption cipher will not exhibit a
carryover condition; and

10

15

20

25

10

increment the buffer via a shift operation before executing

the encryption cipher.

20. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions, when
executed, cause the processor to initiate an Advanced
Encryption Standard (AES) cipher.

21. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions, when
executed, cause the processor to initiate a Galois Counter
Mode (GCM) block cipher mode.

22. A tangible computer readable storage medium as
defined in claim 21, wherein the instructions, when
executed, cause the processor to determine a most signifi-
cant bit associated with the buffer associated with the GCM
block cipher mode.

23. A tangible computer readable storage medium as
defined in claim 22, wherein the instructions, when
executed, cause the processor to identify the carryover
condition by comparing the most significant bit of the buffer
with a maximum block size.

24. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions, when
executed, cause the processor to replace a pshufb operation
with a logical shift operation.

25. A tangible computer readable storage medium as
defined in claim 19, wherein the instructions, when
executed, cause the processor to apply a pshufb operation to
byte reflect the buffer when the carryover condition occurs.

#* #* #* #* #*

